Skip to main content

Using Power Aware IBIS v5.0 Behavioral IO Models to Simulate Simultaneous Switching Noise

Typically simultaneous switching noise (SSN) transient simulations require significant CPU and RAM resources.

Download PDF

Typically simultaneous switching noise (SSN) transient simulations require significant CPU and RAM resources. A prominent factor affecting both CPU and RAM resource requirements is the number of MOSFET models included in the post layout extracted IO netlists. By replacing the IO netlists with power aware IBIS v5.0 behavioral models, both the CPU and RAM resource requirements are dramatically reduced. A comparison of several SSN transient simulations whereby the aggressor frequency is sweep across a wide frequency range is shown. The resultant victim waveforms will clearly demonstrate that each SSN transient simulation using post layout extracted IO netlists requires days to run compared to just mere minutes using power aware IBIS v5.0 behavioral models. Most notably, there is no significant loss in accuracy. In fact, in many cases, there is an increase in accuracy due to convergence issues associated with post layout extracted IO netlists. The power aware IBIS v5.0 behavioral models offer both dramatically faster transient simulation times and lower memory requirements. Improvements to these two key metrics without sacrificing accuracy, allows for more aggressive and accurate signal and power integrity analysis than has previously been possible.